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LARGE EDDY SIMULATION IN A FULLY DEVELOPED

TURBULENT FLOW IN A CHANNEL AND COMPARISON

OF SUBGRID EDDY VISCOSITY MODELS

UDC 532.529:536.24K. N. Volkov

The accuracy and computational efficiency are compared for a number of models of subgrid eddy vis-
cosity (Smagorinsky model, renormalization group model, and dynamic and one-parameter models).
Space-filtered Navier–Stokes equations are solved numerically by the control-volume approach on
a nonuniform grid with the use of high-resolution schemes in time and space. The numerical data
are compared with the results of a physical experiment and direct numerical simulation.
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Introduction. Despite the intense development of computational technologies and achievements in con-
struction of numerical methods and development of appropriate software, numerical simulation of turbulence remains
one of the most complicated and important problems in fluid dynamics. In contrast to a laminar flow whose com-
putation has already become a routine procedure, reliable prediction of turbulent flow parameters is more art than
rigorous science for numerous reasons (three-dimensional character of the flow; stochastic nature and wide spatial
and temporal spectrum of scales).

The initial pre-requisite for mathematical modeling of turbulence is the assumption that the Navier–Stokes
equations are acceptable for interpreting turbulent flows and for predicting instantaneous characteristics of these
flows [1, 2].

Numerous methods of numerical simulation of turbulent flows include direct numerical simulation (DNS),
large eddy simulation (LES), and solving Reynolds-averaged Navier–Stokes (RANS) equations. There are also
intermediate (hybrid) approaches that combine these or those features of DNS, RANS, and LES, in particular,
detached eddy simulation (DES) [3].

Direct numerical simulation implies solving the full Navier–Stokes equations, which allows obtaining instan-
taneous characteristics and resolving all scales of a turbulent flow, if numerical and other types of errors can be
avoided. The resultant statistics is used to test turbulence models, to develop methods of turbulent flow control,
and to study the laminar–turbulent transition. As the capabilities of measurement equipment are limited, DNS is
considered as a source of experimental data (e.g., such parameters of the flow as pressure fluctuations, vorticity,
and rate of dissipation of turbulent energy).

Obstacles in using DNS are high requirements to difference schemes, satisfaction of initial and boundary
conditions, and limited computational resources [1, 2]. Steps of integration in time and space have the order of
Kolmogorov’s scales of time and length and decrease with increasing Reynolds number [2]. Obtaining a statistically
steady flow pattern requires tens and hundreds of hours of processor time. The use of unstructured grids also
contributes to consumption of computer memory and processor time. Because of requirements listed above, it is
difficult to implement computations that involve DNS (except for low Reynolds numbers and simple flow geometry).
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Solving RANS equations requires much lower computational resources and is successfully used in practice.
The issues of closure are solved at different levels of complexity [1]. Turbulence models are classified in terms of
the number of equations introduced in addition to the Reynolds equations. An increase in the number of equations
requires additional semi-empirical information to be involved, which spoils model universality. Available models of
turbulence do not possess acceptable universality and, therefore, cannot be used to solve a wide range of applied
problems.

The absence of a universal turbulence model suitable for computing all or, at least, most turbulent flows
shifted the focus in turbulence research. Improved capabilities of computational engineering simulated the search
for and application of approaches that are more rigorous and universal than RANS.

Large eddy simulation is a compromise between DNS and RANS. LES implies solving space-filtered Navier–
Stokes equations. Large eddies, being under a direct action of boundary conditions and carrying the maximum
Reynolds stresses, are calculated. Small vortices have a more universal structure and are modeled by subgrid
scale (SGS) models constructed on the concept of eddy viscosity or other rational approximations of transport
processes. Subgrid models are normally characterized by significant diffusion and dissipation, which allows one
to overcome computational problems caused by presentation of small vortices on a chosen grid and to stabilize
numerical computations [1, 4].

As LES does not allow direct computations of small vortices, the difference grids and time steps are much
greater (approximately by an order of magnitude) than Kolmogorov’s scales of length and time. Higher Reynolds
numbers than in the DNS method can be reached with a fixed computational memory. The main LES problem,
however, is determining derivatives for resolving the finest scales [4, 5].

A large number of subgrid models, filters, boundary conditions, and finite-difference schemes have been
tested in numerous computations [5–7]. Nevertheless, neither the optimal choice of the subgrid model is clear nor
the choice, if made, is justified [1]. There are no universal near-wall functions reducing the number of nodes in the
vicinity of the wall; hence, it is difficult to use LES for computing flows with small separation regions and transition
points [3, 7], e.g., for computing the flow around an airfoil at incidence [6]. Yet, LES is a promising direction in the
development of methods for computing turbulent flows and seems to be a serious alternative to DNS and RANS.

The accuracy and computational efficiency for a number of models of subgrid eddy viscosity [Smagorinsky
model, renormalization group (RNG) model, and dynamic and one-parameter models] are compared in the present
work as applied to computing a fully developed turbulent channel flow. The numerical data are compared with the
results of a physical experiment and direct numerical simulation.

1. Governing Equations. In the Cartesian coordinate system (x, y, z), the unsteady flow of a viscous
compressible gas is described by the following equation written for space-filtered quantities:

∂Q

∂t
+

∂F

∂x
+

∂G

∂y
+

∂H

∂z
= 0. (1)

Equation (1) is supplemented by the equation of state for a perfect gas:

p = (γ − 1)ρ[e − (u2 + v2 + w2)/2].

The vector of conservative variables Q and the flux vectors F , G, and H have the following form:

Q =

⎛
⎜⎜⎜⎜⎝

ρ

ρu

ρv

ρw

ρe

⎞
⎟⎟⎟⎟⎠

,

F =

⎛
⎜⎜⎜⎜⎝

ρu

ρuu + p − τxx

ρuv − τxy

ρuw − τxz

(ρe + p)u − uτxx − vτxy − wτxz + qx

⎞
⎟⎟⎟⎟⎠

,
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G =

⎛
⎜⎜⎜⎜⎝

ρv

ρvu − τyx

ρvv + p − τyy

ρvw − τyz

(ρe + p)v − uτyx − vτyy − wτyz + qy

⎞
⎟⎟⎟⎟⎠

,

H =

⎛
⎜⎜⎜⎜⎝

ρw

ρwu − τzx

ρwv − τzy

ρww + p − τzz

(ρe + p)w − uτzx − vτzy − wτzz + qz

⎞
⎟⎟⎟⎟⎠

.

The components of the viscous stress tensor and the components of the heat-flux vector are found from the relations

τij = µe

( ∂vi

∂xj
+

∂vj

∂xi
− 2

3
∂vk

∂xk
δij

)
, qi = −χe

∂T

∂xi
,

where t is the time, ρ is the density, u, v, and w are the velocity components in the coordinate directions x, y, and
z, respectively, p is the pressure, e is the total energy of a mass unit, T is the temperature, γ is the ratio of specific
heats, τ is the shear stress, and δij is the Kronecker symbol.

Equation (1) is suitable for both laminar and turbulent flows. In modeling turbulent flows, the molecular
transport coefficients are replaced by their effective values. Effective viscosity µe is calculated as the sum of molecular
viscosity µ and subgrid turbulent viscosity µsgs, whereas effective thermal conductivity χe is expressed via viscosity
and the Prandtl number as

µe = µ + µsgs, χe = cp(µ/Pr + µsgs/Prsgs),

where cp is the specific heat at constant pressure, Pr = 0.72, and Prsgs = 0.9.
2. Subgrid Scale Models. To close the space-filtered Navier–Stokes equations (1), we use the hypothesis

of eddy viscosity.
2.1. Smagorinsky Model. In the Smagorinsky model [8], subgrid viscosity is calculated as

µsgs = ρ(CS∆)2|S|, (2)

where

|S| = (2SijSij)1/2, Sij =
1
2

( ∂vi

∂xj
+

∂vj

∂xi

)
.

It is usually assumed that CS ≈ 0.1. To take into account the influence of the wall on the mixing length, Eq. (2) is
supplemented by the Van Driest damping function

fµ = 1 − exp [−(y+/25)3],

where y+ = ρuτy/µ, uτ = (τw/ρ)1/2, and τw is the friction stress on the wall.
2.2. RNG Model. In the renormalization group theory, subgrid viscosity is calculated by solving the nonlinear

equation [9]

µsgs = µ[1 + H(X − C)]1/3, X = 2A
( ∆

2π

)4 µsgs

µ3
|S|2. (3)

Here H(X) is the Heaviside function, A = 0.12, and C = 75. For X � C, Eq. (3) reduces to the Smagorinsky
formula (2), and

CS = (2π)2
√

A/2 = 0.0062.

2.3. Dynamic Model. The dynamic model [10] involves information contained in resolvable scales to estimate
the Smagorinsky parameter.

The formulation of the dynamic model starts from the Smagorinsky eddy viscosity approximation. The
so-called probe or test filter is introduced, the transmission band of this filter ∆̂ being greater than the width of the
initial (grid) filter ∆ used for filtering the Navier–Stokes equations (it is normally assumed that ∆̂ = 2∆). Density
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is considered as a function of time only, but not as a function of spatial coordinates. The value of the parameter CS

is assumed to be unchanged during secondary filtration.
We introduce a second-order tensor Lij (the so-called Leonard stress tensor) whose components are equal to

the difference between the components of subgrid stress tensors Tij and τ̃ij :

L∗
ij = Lij − (1/3)δijLkk = (Tij − τ̂ij)/ρ = ̂̃viṽj − ˆ̃vi

ˆ̃vj = −2CS∆̂2Mij .

Here Mij = (∆̂/∆)2| ˆ̃S| ˆ̃Sij − |S̃|S̃ij . The quantity Lij is the contribution of vortices whose sizes vary from ∆ to ∆̂
to the Reynolds stress.

The value of the parameter CS∆ is chosen by minimizing the error given by the quantity

Q = EijEij ,

where

Eij = L∗
ij − Tij + τ̂ij = L∗

ij + 2CEMij , CE = (CS∆)2.

Using the least squares technique and averaging over the volume, we can write

∂E2

∂CE
=

∂〈EijEij〉
∂CE

= 2
〈
Eij

∂Eij

∂CE

〉
= 0.

Taking into account that ∂Eij/∂CE = 2Mij, we obtain

CE = −(1/2)〈LijMij〉/〈MklMkl〉.
The value of the parameter CS calculated by the dynamic procedure significantly oscillates in space and

time. A specific difficulty resulting from these oscillations is a possibly negative value of eddy viscosity (CS < 0).
This feature means energy transfer from subgrid vortices to resolvable scales [9]. In principle, such a process may
occur in an unsteady flow, but it usually leads to computational instability [5]. To prevent this, CS is averaged over
uniform directions, which damps high-frequency harmonics. At the (n+1)th time step, we use the lower relaxation,
which suppresses high-frequency oscillations

Cn+1
S = (1 − ω)Cn

S + ωC∗
S ,

where ω is the coefficient of lower relaxation (ω ≈ 10−3).
2.4. Differential Model. Eddy viscosity can be expressed in terms of the subgrid turbulent kinetic energy

µsgs = ρ(CS∆)k1/2
sgs .

The subgrid turbulent kinetic energy is found by soling the equation

∂ρksgs

∂t
+

∂ρvjksgs

∂xj
=

∂

∂xj

[(
µ +

µsgs

σk

)∂ksgs

∂xj

]
− cε

k
3/2
sgs

∆
. (4)

It is assumed in Eq. (4) that σk = 0.7 and cε = 0.845.
3. Width of the Filter. The computed results depend on the filter width ∆, which enters the filtration

operator and is related to the difference-grid step:

∆ = V 1/3 = (∆x∆y ∆z)1/3

(V is the cell volume and ∆x, ∆y, and ∆z are the grid steps in the coordinate directions x, y, and z, respectively).
The grid step in the boundary layer in the normal-to-wall direction ∆y is replaced by ∆̂y, and the filter

width is found from the relation

∆ = (∆x ∆̂y ∆z)1/3,

where ∆̂y = ∆y in the vicinity of the wall and ∆̂y = ∆̄y far from the wall (a smooth transition between the
indicated limiting values is used for intermediate values of y). The quantity ∆̄y is the mean value of ∆y in the
near-wall region, and ∆̂y is calculated by the formula

∆̂y = [(1/∆y)α + (1/∆̄y)α]−1/α,

where α = 3.
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A smaller width of the filter allows reproduction of a wider frequency range of fluctuations of flow parameters,
whereas an increase in ∆ facilitates smoothing of the solution (LES transforms to DNS as ∆ → 0).

4. Initial and Boundary Conditions. Velocity, pressure, and temperature distributions are set as the
initial conditions at the time t = 0.

Uniform velocity, density, and pressure profiles (u = u0, ρ = ρ0, and p = p0) with superimposed random
perturbations of a given amplitude (white noise) are prescribed in the initial cross section of the channel. No-slip
boundary conditions are set for velocity components on the wall, as well as the wall temperature Tw.

Modeling of unsteady subsonic flows faces the problem of setting the boundary conditions for the exhausting
gas flow containing intense vortex structures. Possible non-physical effects of generation and reflection of acoustic
waves at the exit boundary distort the real pattern of the flow. All sought functions at the exit of the computational
domain are subjected to the convective transfer conditions (non-reflecting boundary conditions)

∂f

∂t
+ U

∂f

∂n
= 0,

where U is the velocity independent of the exit-boundary position and chosen from the condition of conservation
of mass.

5. Numerical Method. Nonlinear interactions with resolvable scales and corresponding wavenumbers pro-
duce waves with wavenumbers higher than the critical one, which can be interpreted numerically [4] (compatibility).
If no special precautions are taken, this effect can be interpreted as fictitious energy transfer to low wavenumbers
[4] (negative turbulent viscosity).

Discretization of Eq. (1) is performed by the control-volume approach on a nonuniform grid [11]. To move
the solution in time and present the spatial derivatives on the finest scales, we use high-resolution finite-difference
schemes. In contrast to the mean velocity, the accuracy of predicting velocity fluctuations strongly depends on the
order of the difference scheme [5].

Equation (1) is written in the form

dQn
i,j,k

dt
+ L(Qn

i,j,k) = 0,

where

L(Qn
i,j,k) =

Fn
i+1/2,j,k − Fn

i−1/2,j,k

∆xi,j,k
+

Gn
i,j+1/2,k − Gn

i,j−1/2,k

∆yi,j,k
+

Hn
i,j,k+1/2 − Hn

i,j,k−1/2

∆zi,j,k
.

The three-step Runge–Kutta method is used for discretization in time [12]:

Q
(1)
i,j,k = Q

(n)
i,j,k + ∆t L(Q(n)

i,j,k),

Q
(2)
i,j,k =

3
4

Q
(n)
i,j,k +

1
4

[Q(1)
i,j,k + ∆tL(Q(1)

i,j,k)], Q
(n+1)
i,j,k =

1
3

Q
(n)
i,j,k +

2
3

[Q(2)
i,j,k + ∆tL(Q(2)

i,j,k)].

The stability region has the form of a circumference of radius rc (a difference scheme is stable if ∆t < rc). The
stability region in the complex plane has the form of a circle

x + iy = r exp (iθ).

The radius of the stability region is found from the relation

rc = min
θ

r(θ) at π/2 � θ � 3π/2.

In particular, rc = 1.25 for the three-step Runge–Kutta method. The Runge–Kutta method is advantageous because
it ensures that the difference scheme is positive (if the solution at the time tn is positive, it remains positive at the
time tn+1 as well).

The flux vector is divided into the inviscid and viscous components. The use of centered difference schemes for
discretization of convective components at high Reynolds numbers leads to computational instability and unphysical
oscillations of the solution. Discretization of inviscid fluxes is performed with the use of the method of piecewise-
parabolic reconstruction and the Chakravarthy–Osher scheme [13], whereas discretization of viscous fluxes involves
the use of second-order centered finite-difference schemes. The method of discretization of diffusion fluxes affects the
technical aspect of implementation of the approach. A lower order of discretization of viscous terms is interpreted
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as a small inaccuracy in presenting viscous forces, which is admissible if turbulent viscosity is calculated by an
approximate model.

The inviscid flux is found from the relation

F (QL, QR) = [F (QL) + F (QR) − |A|(QR − QL)]/2.

The subscripts L and R refer to cells on the left and on the right of the control-volume face.
The matrix A is presented as A = R|Λ|L, where Λ is the diagonal matrix composed of Jacobian eigenvalues;

R and L are the matrices composed of the right and left eigen vectors of this Jacobian.
The Chakravarthy–Osher scheme implies a piecewise-parabolic distribution of the sought variables within

the control volume [13]. The intermediate step deals with determining the auxiliary variables

αi
1,m+1/2 = lim+1/2(Qm − Qm−1),

αi
2,m+1/2 = lim+1/2(Qm+1 − Qm), αi

3,m+1/2 = lim+1/2(Qm+2 − Qm+1).

Here l = {l1, l2, . . .} is the set of left eigenvectors; the superscript i refers to the ith eigenvalue and ith eigen vector;
the subscripts 1, 2, and 3 are used for numeration.

The family of schemes satisfying the total variation diminishing (TVD) condition has the form

Fm+1/2 = Hm+1/2 +
∑

i

(1 + κ

4
α̃i

2,m+1/2 +
1 − κ

4
˜̃αi

2,m+1/2

)
λi+

m+1/2 ri
m+1/2

−
∑

i

(1 + κ

4
˜̃αi

2,m+1/2 +
1 − κ

4
α̃i

3,m+1/2

)
λi+

m+1/2 ri
m+1/2,

where λ = {λ1, λ2, . . .} and r = {r1, r2, . . .} are the set of eigenvalues and the set of right eigen vectors. The first
term in the right side determines the flux by a first-order scheme

Hm+1/2 =
1
2

[F (Qm+1/2) + F (Qm)] − 1
2

∑
i

(λi+
m+1/2 − λi−

m+1/2)α
i
2,m+1/2r

i
m+1/2.

Here

˜̃αi
1,m+1/2 = minmod {αi

1,m+1/2, bα
i
2,m+1/2}; α̃i

2,m+1/2 = minmod {αi
2,m+1/2, bα

i
1,m+1/2};

˜̃αi
2,m+1/2 = minmod {αi

2,m+1/2, bα
i
3,m+1/2}; α̃i

3,m+1/2 = minmod {αi
3,m+1/2, bα

i
2,m+1/2}.

In this equation, b = (3 − κ)/(1 − κ), and the parameter κ determines schemes with different accuracy. The flux
limiter has the form

minmod (x, y) = sign (x)max {0, min [|x|, y sign (x)]}.
The step of integration in time is found from the estimates of inviscid and viscous fluxes

1
∆ti

=
1

CFL
max

{ 1
∆t1i

,
β

∆t2i

}
,

where CFL is the Courant–Friedrichs–Lewy number and β ≈ 0.5. The time step ∆t1i is calculated from the spectral
radius of the Jacobian of the discrete inviscid operator, and the time step ∆t2i is found from the quasi-linear form
of viscous fluxes recorded in primitive variables and from the spectral radius of the Jacobian of the discrete inviscid
operator [11].

The computational procedure is implemented as a sequence of the following steps.
1. Reconstruction of the solution in each control volume and extrapolation of unknowns to find the state of

the flow on the control-volume faces from values prescribed in the center.
2. Solving the Riemann problem for each face of the control volume with allowance for the local flow direction

(normal to the control-volume face).
3. Evolution of the time step.
The system of difference equations is solved by a multigrid method on the basis of a total approximation

scheme (four grid levels and a V-cycle are used).
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Fig. 1. Vortex flow pattern in a channel at t = 0.32 sec.
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Fig. 2. Cross-sectional distribution of streamwise velocity: Smagorinsky model (1), Van Driest
model (2), RNG version of the Smagorinsky model (3), dynamic model (solid curve), differential
model of eddy viscosity (4), DNS data [2] (5), and laminar flow velocity profile (dashed curve).
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Fig. 3. Velocity distribution in the boundary layer near the wall (solid curve): the points follow the
Reichardt law [14]; the dashed and dot-and-dashed curves are the linear distribution of velocity in the
viscous sublayer and the logarithmic distribution in the turbulent region of the boundary layer, respectively.

Fig. 4. Distribution of the turbulent kinetic energy in the vicinity of the wall: the filled points refer to the
DNS data [2] for Reτ = 395; the remaining point here and in Figs. 5–7 denote the same as those in Fig. 2.
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Fig. 5. Distributions of fluctuating components of velocity u′ (1), v′ (2), and w′ (3) over the channel
cross section for Reτ = 180 (a), 360 (b), and 590 (c); the filled points refer to the data of [15, 16].

The use of LES also imposes some specific requirements to computational grids. As the value of effective
viscosity is proportional to the grid step, an increase in the cell size in any direction can increase scheme viscosity
and distort the results. That is why it is reasonable to use computational grids whose cells have approximately
identical sizes in all coordinate directions, independent of the direction of gradients of the mean flow parameters.

6. Computation Results. The following values were assigned to flow parameters: ρ0 = 1.18 kg/m3,
u0 = 180.0 m/sec, p0 = 1.013 · 105 Pa, and Tw = 288 K. The working medium had the following parameters:
γ = 1.4, R = 287.1 J/(kg ·K), cp = 1004.85 J/(kg ·K), Pr = 0.72, and Prt = 0.80. The characteristic parameter of
the problem was assumed to be the Reynolds number Re = ρ0u0h/µ0, which was varied within Re ≈ 100–6000 by
appropriate changes in dynamic viscosity. The interval of the Reynolds number used corresponds to the range Reτ

≈ 10–600, where Reτ = ρ0uτh/µ0. The basic computational variant implied that Reτ = 360 (µ = 0.039 Pa · sec).
The computations were performed on a 150×65×65 grid, being refined toward the walls and the entrance cross

section of the channel. The maximum steps in the coordinate directions were ∆x = 0.052 and ∆y = ∆z = 0.045.
The time step was chosen to be ∆t = 0.00025 sec. Forty thousand time steps were made to obtain a statistically
reliable mean pattern of the flow. The chosen grid steps were approximately three times both Kolmogorov’s length
scale lk = (ν3/ε)1/4 and the scale ν/u2

τ constructed on the basis of dynamic viscosity.
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Fig. 6. Distributions of the turbulent Reynolds stresses (a) and subgrid turbulent stresses (b): the
filled points refer to the results obtained by the Smagorinsky model.
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Fig. 7. Distribution of turbulent viscosity near the wall: the filled points refer to the data of [16].

Fig. 8. Smagorinsky parameter versus the distance from the wall.

The instantaneous flow pattern in the channel was visualized by using the absolute value of velocity vorticity

Ω = |∇ × v| = (Ω2
x + Ω2

y + Ω2
z)

1/2,

where Ωx, Ωy, and Ωz are the vortex components in the coordinate directions x, y, and z, respectively. The
channel-flow pattern presented in the form of lines with identical values of velocity vorticity is shown in Fig. 1.

The streamwise velocity profile in the channel cross section is shown in Fig. 2. The results obtained show
that the Smagorinsky model yields a less filled profile of velocity than other models. Introduction of the Van Driest
damping function improves the computed results, which become almost identical to those computed by the dynamic
model.

The velocity distribution in the vicinity of the wall is in good agreement with the Reichardt law [14] con-
structed on the basis of experimental data and covering the viscous sublayer and the buffer and logarithmic regions
of the boundary layer (Fig. 3). The results are in agreement with data computed by the dynamic model.

The computed turbulent kinetic energy is compared with its DNS values [2, 15] in Fig. 4. The distributions
of fluctuating components of velocity in the channel cross section are plotted in Fig. 5 together with the data of [15,
16]. Though the Smagorinsky model and the Van Driest model underpredict the values of the fluctuating streamwise
velocity component, the fluctuating velocity components v and w computed by different models are in fairly good
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agreement with each other (the data presented refer to the dynamic model). The role of subgrid modeling becomes
more important with increasing Reynolds number.

Figure 6 shows the distributions of turbulent Reynolds stresses and subgrid turbulent stresses. The tur-
bulent viscosity νt in the boundary layer as a function of the distance from the wall is plotted in Fig. 7. The
Smagorinsky model and the Van Driest model underpredict the values of turbulent viscosity. The best agreement
with experimental data is provided by the dynamic and differential models.

The Smagorinsky parameter as a function of the distance from the channel wall, predicted by the dynamic
model, is shown in Fig. 8.

The use of the RNG version of eddy viscosity and the dynamic and differential models increases the com-
putational time by 18, 30, and 35%, respectively, as compared to the time spent on a computation without any
subgrid model.

Conclusions. The accuracy and computational efficiency are compared for a number of models of subgrid
eddy viscosity (Smagorinsky model, Van Dries model, RNG model, and dynamic and one-parameter models).
By comparing the computed data with results of a physical experiment and direct numerical simulation, it is
demonstrated that the use of the Smagorinsky model and the Van Driest model leads to rather large errors in
predicting the fluctuating characteristics of the flow. At the same time, the models examined in the present paper
offer fairly accurate estimates of the mean flow parameters.

The results obtained allow us to conclude that the role of subgrid modeling becomes more important with
increasing Reynolds number.
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